

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

NDE Development for ACERT Engine Components

Project ID: pmp_18_sun

J. G. Sun Nuclear Engineering Division Argonne National Laboratory, Argonne, IL

Collaborators:

Jeff Jensen, Nate Phillips, Nan Yang Caterpillar, Inc.

HT Lin, Mike Kass, D. Ray Johnson Oak Ridge National Laboratory

DOE Annual Merit Review, May 18-22, 2009

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start: Oct. 2007
- Project end: Sep. 2011
- Percent complete: 25%

Budget

- Total project funding
 - DOE: \$800k
- Funding received in FY09
 - \$91k so far due to CR
- Funding for FY10
 - DOE: \$200k

Collaborators

- Caterpillar, Inc.
- ORNL

Barriers

- Barriers addressed:
 - Inadequate test standard and durability data for widespread use of advanced materials
 - Materials for hot-section and engine structures to meet engine life greater than 1 million miles (by 2012)
 - Nondestructive techniques are not sufficiently developed

■ Target:

 By 2012, develop supporting materials technologies to enable heavy-duty engine efficiency of 55% while meeting emission standards

Objectives

Develop rapid, reliable, and repeatable nondestructive evaluation (NDE) methods for inspecting advanced materials and processing technologies to support the material enabled high efficiency diesels program (ACERT™ program)

C-15 ACERT™ engine (image provided by Caterpillar)

- Establish NDE methods and procedures to characterize advanced materials, coatings, friction stir processed surfaces, friction welding, etc in:
 - thermal management components
 - structural components
 - valvetrain components
 - other components

Milestones

- Investigate various NDE technologies for advanced valvetrain, joining, and coating components for diesel engines. – Sep. 2008
- Identify ACERT[™] materials and components for NDE evaluation.
 - March 2009
 - In coordination with the ACERT™ program, it was determined that oxidation-resistant/thermal-barrier coatings for thermal management components will be used and evaluated in early phase of ACERT™ engine tests.
- Develop and assess NDE methods for characterization of thermal barrier coatings (TBCs). Establish NDE procedure and detection sensitivity and evaluate TBC coated components. – Sep. 2009

Approach

- Working with ACERT™ Program team, investigate NDE methods for inspecting various advanced diesel engine materials/components
 - NDE methods for ceramics, valves, joints
 - NDE methods for thermal barrier coating (TBC)
- Current NDE development is focused on flash thermal-imaging methods for TBC coating characterization
 - TBC coated exhaust components will be evaluated in initial ACERT™ tests
 - To ensure quality and durability,
 NDE inspection of coating samples in conditions:
 - As-processed
 - Fatigue/bench tested
 - Engine tested

One-sided flash thermal imaging setup for testing of a turbine blade with TBC coating

Technical Accomplishments/ Progress/Results

- NDE methods applicable to ceramics, valves, joints, and coatings were investigated (FY2008)
 - Optical scanning methods
 - Ultrasonic scanning methods
 - X-ray imaging methods
 - Thermal imaging methods
- Thermal imaging is being developed as the primary NDE method for characterization of thermal barrier coatings (FY2009)
 - Material systems considered for initial ACERT™ engine evaluation are oxidation-resistant and thermal-barrier coatings for exhaust manifold components
 - Thermal imaging has been widely used for NDE of TBCs on gas turbine components; It is being assessed for NDE of thin and thick coatings for diesel engine components
 - NDE inspection for TBC samples after fatigue/bench test at Caterpillar and ORNL in near term, and for engine-tested samples when available

NDE Methods for Advanced Ceramics

- Laser backscatter was successfully utilized for characterization of machining and service induced damage in ceramic (and intermetallic) engine valves
 - Detection of damage level and fracture initiation flaws
- Optical coherence tomography (OCT) and confocal microscopy may image 3D subsurface microstructure in ceramics and coatings
- Ultrasonic surface acoustic waves based on phased array probes may detect subsurface defects/damages in flat/curved ceramic components

Optical backscatter inspection of valve

Fracture surface Tensile surface NDE image

NDE detection of fracture origin (an inclusion) in ceramic valve stem

NDE Methods for Welds/Joints

- X-ray radiography and computed tomography (CT)
 - may determine crack configuration & area
 - may lead to prediction of joint strength
 - may achieve high-resolution and high-sensitivity by using synchrotron x-ray CT systems at ANL
- Ultrasonic scanning
 - for standard part quality inspection

Friction welded TiAl turbo wheels

X-ray CT and radiography systems at ANL

CT slice of a 180-mm-dia, ceramic rotor

Thermal Imaging Methods for Coatings

- NDE detection principle:
 - An infrared camera continuously monitors sample surface temperature after an instantaneous thermal flash energy is applied on surface
 - Surface temperature data are processed to determine coating parameters
- Advantages:
 - High detection sensitivity due to thermal property disparity in each layer
 - Noncontact, flat or curved surface, fast, and 100% surface inspection

Thermal Imaging for Single- and Two-Layer Materials

Typical thermal imaging data (temperature and its slope) at a surface pixel

- Thermal imaging data, surface temperature and its slope at each surface pixel, are significantly different for single- and multi-layer (eg, coated component) materials
- Characteristics in thermal data allow for direct calculation of coating thickness and thermal properties, as well as substrate thickness
- Thermal imaging methods are being developed for such calculations

Two Unique Thermal Imaging Methods Are Being Developed at ANL

- Multilayer thermal modeling method
 - Prediction of 2D distributions of coating properties
 - Thermal conductivity and heat capacity
 - Thickness
 - Determination of coating degradation and delamination
- Thermal tomography method
 - Construction of 3D images of subsurface property/structure
 - NDE detection of coating damages and locations

Multilayer Modeling Prediction of TBC Thermal Properties

4 coating samples

Coating heat capacity ρC_p (J/cm³-K)

- Coating thermal properties are quantitatively determined
- Sample curtsey of Mr. A. Luz, Imperial College London

Thermal Tomography Imaging of Coating Defects

Typical plane thermal tomography images

~0.5mm deep ~0.6m

~1.0mm deep (@interface)

- Defects in coating are clearly detected
 - Defect size/shape from images
 - Defect "severity" from grayscale (effusivity)
 - Defect depth below 0.5 mm (within coating)

Coating thickness ~1.0mm

Future Work

- Continue current development of thermal imaging methods and inspect coating samples and engine components (FY09)
 - Optimize NDE detection sensitivity for coatings of different thicknesses and thermal properties
 - Evaluate coating durability under fatigue/bench test conditions
 - Evaluate coated components after ACERT™ engine tests
- Investigate thermal imaging for inspection of friction-stir-processed surfaces
- Develop NDE methods for inspection of friction-welded joints
- Conduct NDE development for inspecting other engine components identified by the ACERT[™] Program team

Summary

- NDE development for engine components made from/by advanced materials/processes is essential to assure their quality and durability to meet engine efficiency and emission goals
- Current NDE development is focused on thermal imaging methods for characterizing oxidation-resistant/thermal-barrier coatings for thermal management components. Thermal imaging may also be used to evaluate friction-stir-processed surfaces
- Collaboration with material scientists and engine engineers at Caterpillar and ORNL to develop and apply NDE technologies for critical engine components